- consistent axioms
- Математика: непротиворечивые аксиомы
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Consistent histories — Quantum mechanics Uncertainty principle … Wikipedia
ω-consistent theory — In mathematical logic, an ω consistent (or omega consistent, also called numerically segregative[1]) theory is a theory (collection of sentences) that is not only (syntactically) consistent (that is, does not prove a contradiction), but also… … Wikipedia
Peano axioms — In mathematical logic, the Peano axioms, also known as the Dedekind Peano axioms or the Peano postulates, are a set of axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used… … Wikipedia
Ω-consistent theory — In mathematical logic, an ω consistent (or omega consistent, also called numerically segregativeW.V.O. Quine, Set Theory and its Logic ] ) theory is a theory (collection of sentences) that is not only (syntactically) consistent (that is, does not … Wikipedia
Tarski's axioms — Tarski s axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry, called elementary, that is formulable in first order logic with identity, and requiring no set theory. Other modern axiomizations of… … Wikipedia
History of the separation axioms — In general topology, the separation axioms have had a convoluted history, with many competing meanings for the same term, and many competing terms for the same concept. Origins Before the current general definition of topological space, there… … Wikipedia
Gödel's incompleteness theorems — In mathematical logic, Gödel s incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest. The theorems are of… … Wikipedia
non-Euclidean geometry — geometry based upon one or more postulates that differ from those of Euclid, esp. from the postulate that only one line may be drawn through a given point parallel to a given line. [1870 75; NON + EUCLIDEAN] * * * Any theory of the nature of… … Universalium
set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… … Universalium
logic, history of — Introduction the history of the discipline from its origins among the ancient Greeks to the present time. Origins of logic in the West Precursors of ancient logic There was a medieval tradition according to which the Greek philosopher … Universalium
metalogic — /met euh loj ik/, n. the logical analysis of the fundamental concepts of logic. [1835 45; META + LOGIC] * * * Study of the syntax and the semantics of formal languages and formal systems. It is related to, but does not include, the formal… … Universalium